117 research outputs found

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    Almost spanning subgraphs of random graphs after adversarial edge removal

    Full text link
    Let Delta>1 be a fixed integer. We show that the random graph G(n,p) with p>>(log n/n)^{1/Delta} is robust with respect to the containment of almost spanning bipartite graphs H with maximum degree Delta and sublinear bandwidth in the following sense: asymptotically almost surely, if an adversary deletes arbitrary edges in G(n,p) such that each vertex loses less than half of its neighbours, then the resulting graph still contains a copy of all such H.Comment: 46 pages, 6 figure

    Triangle-free subgraphs of random graphs

    Get PDF
    Recently there has been much interest in studying random graph analogues of well known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n,p)G(n,p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n,p)G(n,p) with minimum degree at least (25+o(1))pn\big(\frac{2}{5} + o(1)\big)pn is O(p−1n)\mathcal O(p^{-1}n)-close to bipartite, and each spanning triangle-free subgraph of G(n,p)G(n,p) with minimum degree at least (13+ε)pn(\frac{1}{3}+\varepsilon)pn is O(p−1n)\mathcal O(p^{-1}n)-close to rr-partite for some r=r(ε)r=r(\varepsilon). These are random graph analogues of a result by Andr\'asfai, Erd\H{o}s, and S\'os [Discrete Math. 8 (1974), 205-218], and a result by Thomassen [Combinatorica 22 (2002), 591--596]. We also show that our results are best possible up to a constant factor.Comment: 18 page
    • …
    corecore